一、求教一个双曲函数的导数

如下:

双曲正弦函数:(sinhx)'=coshx。

双曲余弦函数:(coshx)'=sinhx。

双曲正切函数:[tanh(x)]'=1-^2。

反双曲正弦函数:(arcsinhx)'=(x^2+1)^-0.5。

反双曲余弦函数:(arccoshx)'=(x^2-1)^-0.5。

反双曲正切函数:(arctanh x) ' = 1/(1-x^2)。

双曲函数

在数学中,双曲函数是一类与常见的三角函数(也叫圆函数)类似的函数。最基本的双曲函数是双曲正弦函数sinh和双曲余弦函数cosh,从它们可以导出双曲正切函数tanh等,其推导也类似于三角函数的推导。双曲函数的反函数称为反双曲函数。

双曲函数的定义域是区间,其自变量的值叫做双曲角。双曲函数出现于某些重要的线性微分方程的解中,譬如说定义悬链线和拉普拉斯方程。

二、双曲正切函数的双曲正切函数的导数

双曲的导数是双曲余弦的平方的倒数。即:

这与三角正切的导数相类似。

三、三角函数导数公式

1、正弦函数sinx的导数:(sinx)' = cosx 

2、余弦函数cosx的导数:(cosx)' = - sinx 

3、正切函数tanx的导数:(tanx)'=(secx)^2=1/(cosx)^2=1+(tanx)^2 

4、余切函数cotx的导数:(cotx)'=-(cscx)^2=-1/(sinx)^2=(cotx)^2 -1

5、正割函数secx的导数:(secx)'=tanx·secx 

6、余割函数cscx的导数:(cscx)'=-cotx·cscx

扩展资料

三角函数的导数记忆:

1、正变余,余变正:正弦的导函数是对应的余弦函数。

2、切割方:切函数的导函数是相应割函数的平方。

3、割乘切:割函数的导函数是该割函数乘以切函数。

参考资料来源:百度百科-三角函数

四、acrtanh的导数和arccoth的导数

郭敦顒回答:

双曲正切tanh=[e^x-e^(-x)]/ [e^x+e^(-x)]

双曲余切cot h= [e^x+e^(-x)]/ [e^x-e^(-x)]

反双曲正切y=arctanh

反双曲余切y=arccoth

y′=(arctanh)′=1/(1-x²)

(arccoth)′=1-x²

参考资料:百度文库——

2-4 初等函数的求导问题 双曲函数与反双曲函数的导数

五、双曲正切函数求导

双曲正切函数在数学语言上一般写作tanh,也可简写成th。与三角函数一样,双曲函数也分为双曲正弦、双曲余弦、双曲正切、双曲余切、双曲正割、双曲余割6种,双曲正切函数便是其中之一。

与正切函数类似,双曲正切函数在计算上等于双曲正弦与双曲余弦的比值,即tanh(x)=sinh(x)/cosh(x)。在数学中,双曲函数是一类与常见的三角函数(也叫圆函数)类似的函数。最基本的双曲函数是双曲正弦函数sinh和双曲余弦函数cosh,从它们可以导出双曲正切函数tanh等,其推导也类似于三角函数的推导。双曲函数的反函数称为反双曲函数y=coth x,定义域:{x|x≠0},值域:{y||y|>1},奇函数,函数图像分为两支,分别在Ⅰ、Ⅲ象限,函数在(-∞,0)和(0,+∞)分别单调递减,垂直渐近线为y轴,两水平渐近线为y=1和y=-1。

y=sech x,定义域:R,值域:(0,1],偶函数,最高点是(0,1),函数在(0,+∞)严格单调递减,(-∞,0)严格单调递增。x轴是其渐近线。

y=csch x,定义域:{x|x≠0},值域:{y|y≠0},奇函数,函数图像分为两支,分别在Ⅰ、Ⅲ象限,函数在(-∞,0)和(0,+∞)分别单调递减,垂直渐近线为y轴,两水平渐近线为x轴。