一、求y=arctanx的导数

y=arctanx,则x=tany

arctanx′=1/tany′

tany′=(siny/cosy)′=cosycosy-siny(-siny)/cos²y=1/cos²y

则arctanx′=cos²y=cos²y/sin²y+cos²y=1/1+tan²y=1/1+x²

故最终答案是1/1+x²

希望能帮到你

二、arctan x求导详细过程

结果为:1/1+x²

解题过程如下:

∵y=arctanx

∴x=tany

arctanx′=1/tany′

tany′=(siny/cosy)′

=cosycosy-siny(-siny)/cos²y

=1/cos²y

则arctanx′=cos²y

=cos²y/sin²y+cos²y

=1/1+tan²y

=1/1+x²

扩展资料

求导公式:

1、C'=0(C为常数);

2、(Xn)'=nX(n-1) (n∈R);

3、(sinX)'=cosX;

4、(cosX)'=-sinX;

5、(aX)'=aXIna (ln为自然对数);

6、(logaX)'=1/(Xlna) (a>0,且a≠1);

7、(tanX)'=1/(cosX)2=(secX)2

8、(cotX)'=-1/(sinX)2=-(cscX)2

9、(secX)'=tanX secX;

10、(cscX)'=-cotX cscX;

求导方法:

求导是微积分的基础,同时也是微积分计算的一个重要的支柱物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。

中存在隐函数

,这里仅是说y为一个x的函数并非说y一定被反解出来为显式表达。即

,尽管y未反解出来,只要y关于x的隐函数存在且可导,我们利用复合函数求导法则则仍可以求出其反函数。

三、arctanx的导数是什么

x=tany

y= arctanx

dx/dy =1/sec^2(y)=1/(1+tan^2(y))=1/(1+x^2)

y'(x)=1/1+x^2

扩展资料:

三角函数求导公式:

(arcsinx)'=1/(1-x^2)^1/2

(arccosx)'=-1/(1-x^2)^1/2

(arctanx)'=1/(1+x^2)

(arccotx)'=-1/(1+x^2)

(arcsecx)'=1/(|x|(x^2-1)^1/2)

(arccscx)'=-1/(|x|(x^2-1)^1/2)

四、arctanx的导数是什么?

解:令y=arctanx,则x=tany。

对x=tany这个方程“=”的两边同时对x求导,则

(x)'=(tany)'

1=sec²y*(y)',则

(y)'=1/sec²y

又tany=x,则sec²y=1+tan²y=1+x²

得,(y)'=1/(1+x²)

即arctanx的导数为1/(1+x²)。

反正切函数arctanx的求导过程

设x=tany

tany'=sex^y

arctanx'=1/(tany)'=1/sec^y

sec^y=1+tan^y=1+x^2

所以(arctanx)'=1/(1+x^2)