一、自然数的概念包括0吗
自然数包括0自然数集是全体非负整数(在过去的教科书中,0一般被认为不是自然数,但21世纪的规定表明,0确实为自然数,而更正原因是为了方便简洁)组成的集合,常用N来表示。自然数有无穷多个。
自然数的分类
一、按奇偶性分:可分为奇数和偶数。
1、奇数:不能被2整除的数叫奇数。
2、偶数:能被2整除的数叫偶数。也就是说,除了奇数,就是偶数。
注:0是偶数。
二、按因数个数分:可分为质数、合数、1和0。
1、质数:只有1和它本身这两个因数的自然数叫做质数。也称作素数。
2、合数:除了1和它本身还有其它的因数的自然数叫做合数。
3、1只有1个因数。它既不是质数也不是合数。
4、当然0不能计算因数,和1一样,也不是质数也不是合数。
备注:这里是因数不是约数。
二、自然数的定义包括0吗
自然数的定义包括0,自然数是指用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4等所表示的数。自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。但自然数相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不总是成立的。自然数是有序的,自然数可以从0开始,不重复也不遗漏地排成一个数列:0,1,2,3等这个数列叫自然数列。一个集合的元素如果能与自然数列或者自然数列的一部分建立一一对应,就说这个集合是可数的,否则就说它是不可数的。
三、自然数包括0吗?
自然数包括0。
1、自然数
自然数用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,……所表示的数。表示物体个数的数叫自然数,自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。
2、概述
自然数是指表示物体个数的数,即由0开始,0,1,2,3,4,……一个接一个,组成一个无穷的集体,即指非负整数。
3、关于0(多数教材认同其为自然数之首)
0的争议
对于“0”,它是否包括在自然数之内存在争议,有人认为自然数为正整数,即从1开始算起;而也有人认为自然数为非负整数,即从0开始算起。到21世纪关于这个问题也尚无一致意见。
在国外,有些国家的教科书是把0也算作自然数的。这本是一种人为的规定,我国为了推行国际标准化组织(ISO)制定的国际标准,定义自然数集包含元素0,也是为了早日和国际接轨。
现行九年义务教育教科书和高级中学教科书(试验修订本)都把非负整数集叫做自然数集,记作N,而正整数集记作N+或N*。这就一改以往0不是自然数的说法,明确指出0也是自然数集的一个元素。0同时也是有理数,也是非负数和非正数。
0的来由
0是极为重要的数字,0的发现被称为人类伟大的发现之一。0在我国古代叫做金元数字,(意即极为珍贵的数字)。0这个数据说是由印度人在约公元5世纪时发明,在1202年时,一个商人写了一本算盘之书,在东方中由于数学是以运算为主(西方当时以几何并在开头写了“印度人的9个数字,加上阿拉伯人发明的0符号便可以写出所有数字……”。由于一些原因,在初引入0这个符号到西方时,曾经引起西方人的困惑, 因当时西方认为所有数都是正数,而且0这个数字会使很多算式、逻辑不能成立(如除以0),甚至认为是魔鬼数字,而被禁用。直至约公元15,16世纪0和负数才逐渐给西方人所认同,才使西方数学有快速发展。0的另一个历史:0的发现始于印度。公元左右,印度最古老的文献《吠陀》已有“0”这个符号的应用,当时的0在印度表示无(空)的位置。约在6世纪初,印度开始使用命位记数法。7世纪初印度大数学家葛拉夫.玛格蒲达首先说明了0的0是0,任何数加上0或减去0得任何数。遗憾的是,他并没有提到以命位记数法来进行计算的实例。也有的学者认为,0的概念之所以在印度产生并得以发展,是因为印度佛教中存在着“绝对无”这一哲学思想。公元733年,印度一位天文学家在访问现伊拉克首都巴格达期间,将印度的这种记数法介绍给了阿拉伯人,因为这种方法简便易行,不久就取代了在此之前的阿拉伯数字。这套记数法后来又传入西欧。
参考资料
百度百科.百度百科[引用时间2017-12-20]
四、自然数包括0吗
自然数包括0。自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。
自然数是一切等价有限集合共同特征的标记。
整数包括自然数,所以自然数一定是整数,且一定是非负整数。
自然数集N是指满足以下条件的集合:
①N中有一个元素,记作1。
②N中每一个元素都能在 N 中找到一个元素作为它的后继者。
③1是0的后继者。④0不是任何元素的后继者。
⑤不同元素有不同的后继者。
⑥(归纳公理)N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。
扩展资料
性质:
1、有序性。自然数的有序性是指,自然数可以从0开始,不重复也不遗漏地排成一个数列:0,1,2,3,…这个数列叫自然数列。
一个集合的元素如果能与自然数列或者自然数列的一部分建立一一对应,我们就说这个集合是可数的,否则就说它是不可数的。
2、无限性。自然数集是一个无穷集合,自然数列可以无止境地写下去。
数学中,自然数指用于计数(如“桌子上有三个苹果”)和定序(如“国内第三大城市”)的数字。用于计数时称之为基数,用于定序时称之为序数。
自然数的定义不一,可以指正整数,亦可以指非负整数。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 ISO 80000-2 标准中所采用的定义。
数学家一般以N代表以自然数组成的集合。自然数集是一个可数的,无上界的无穷集合。
在中国大陆,2000年左右之前的中小学教材一般不将0列入自然数之内,或称其属于“扩大的自然数列”。在2000年左右之后的新版中小学教材中,普遍将0列入自然数。
认为自然数不包含零的其中一个理由是自然数所指为自然界中存在的数,例如一棵大树、两条鱼、十亿个细胞等等,而鲜少有人说零个物品。
国际标准ISO 31-11:1992《量和单位 第十一部分:物理科学和技术中使用的数学标志与符号》(已被ISO/IEC 80000-2取代)中,从集合论角度规定:符号N所表示的自然数集是包括正整数和0。
参考资料:百度百科–自然数
五、自然数包括0吗?包括负数吗?
自然数包括0以及所有的正整数,不包括负数。自然数是指用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4……所表示的数。自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。
自然数集N是指满足以下条件的集合:
①N中有一个元素,记作1。
②N中每一个元素都能在 N 中找到一个元素作为它的后继者。
③1是0的后继者。
④0不是任何元素的后继者。
⑤不同元素有不同的后继者。
⑥(归纳公理)N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。
六、自然数都包括什么数
自然数是指用以计量事物的件数或表示事物次序的数。自然数包括偶数和奇数,合数和质数等。
自然数包括哪些数
(一)按是否是偶数可分为:奇数、偶数
1.奇数
奇数指不能被2整除的数,也叫单数,数学表达形式为2n+1,奇数可以分为正奇数和负奇数。
2.偶数
偶数指能够被2整除的整数,也叫双数。数学表达形式为2n。
(二)按因数个数可分为:质数、合数、1和0
1.质数
质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。
2.和数
合数是指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。
3.1
只有1个因数。它既不是质数也不是合数。
4.0
和1一样,也不是质数也不是合数。
自然数有哪些特性
(1)0和正整数,称为自然数。0是最小自然数。
(2)在不表示物体的个数时,0就不再表示“没有”,而是表示特定意义。例如,今天的气温是0摄氏度。
(3)分母是1的分数,其分数值等于分子。
(4)1和0,既不是质数,也不是合数。
(5)如果一个数的各个数位上的数的和能被3整除,这个数定能被3整除。例如,63249÷3=21083。
(6)各个数位上的数分别都是3的倍数,这个数定能被3整除。例如,369÷3=123;369963÷3=123321。
(7)一个数的末三位上的数字所组成的数与末三位以前的数字所组成的数均能被7整除,那么这个数定能被7整除。
(8)如果一个数的各个数位上的数的和能被9整除,这个数定能被9整除。
(9)9乘任意数,因9=10-1,故任意数×9=任意数×10-任意数×1=任意数尾添0-原任意数,将乘法转化成数尾添0和减法,可用于速算。
(10)在乘法中,乘10,被乘数尾添一个0。以此类推。
(11)在除法中,除以10,被除数小数点向左移一位。以此类推。