一、直角三角形的周长计算公式

设直角三角形的三边分别为a,b,c, 其中 c为斜边,则,其周长=a+b+c.

三边的关系为:c^2=a2+b^2.

等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:具有稳定性、内角和为180°两直角边相等,两锐角为45°,斜边上中线、角平分线、垂线三线合一,等腰直角三角形斜边上的高为此三角形外接圆的半径R。

扩展资料:

它除了具有一般三角形的性质外,具有一些特殊的性质:

1、直角三角形两直角边的平方和等于斜边的平方。如图,∠BAC=90°,则AB²+AC²=BC²(勾股定理)

2、在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°

3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。

4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。

注意:

①任意三角形的内心、重心都在三角形的内部 .

②钝角三角形垂心、外心在三角形外部。

③直角三角形垂心、外心在三角形的边上。

(直角三角形的垂心为直角顶点,外心为斜边中点。)

④锐角三角形垂心、外心在三角形内部。

⑤任意三角形的旁心一定在三角形的外部。

参考资料:百度百科---直角三角形

二、直角三角形的周长公式是什么?

直角三角型的周长定义:L=a+b+c,指三条边之和。

直角三角形(right triangle)是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角三角形两种。其符合勾股定理,具有一些特殊性质和判定方法。

直角三角形如图1所示:分为两种情况,有普通的直角三角形,还有等腰直角三角形(特殊情况)在直角三角形中,与直角相邻的两条边称为直角边,直角所对的边称为斜边。直角三角形直角所对的边也叫作“弦”。若两条直角边不一样长,短的那条边叫作“勾”,长的那条边叫作“股”。

等腰直角三角形是一种特殊的三角形:

等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:具有稳定性、内角和为180°。两直角边相等,两锐角为45°,斜边上中线、角平分线、垂线三线合一,等腰直角三角形斜边上的高为此三角形外接圆的半径R。

三、直角三角形的周长计算公式?

直角三角形的周长计算公式?

答:直角三角形的周长等于三条边长的总和。

根据已知条件计算出三条边长,相加即得。

已知一个锐角和一条边长,利用三角函数关系,即可得到其它边长,最终得解。

四、直角三角形的周长公式是什么呢?

直角三角形的周长公式:C = a+b+c(abc为三角形的三条边)。

直角三角形分为两种情况:有普通的直角三角形,还有等腰直角三角形(特殊情况)在直角三角形中,与直角相邻的两条边称为直角边,直角所对的边称为斜边。直角三角形直角所对的边也叫作“弦”。若两条直角边不一样长,短的那条边叫作“勾”,长的那条边叫作“股”。

关于周长的学习它是义务教育数学第一学段三年级(上册)的学习内容,课程标准关于周长的学习内容:

1、首先是让学生认识到周长的概念,并能在实际生活中体验周长;

2、其次是让学生掌握测量周长的方法和过程;

3、最后是体验和感受数学在生活中的应用。

扩展资料

周长和面积的关系:

如果以同一面积的三角形而言,以等边三角形的周界最短; 如果以同一面积的四边形而言,以正方形的周界是最短; 如果以同一面积的五边形而言,以正五边形的周界最短;

如果以同一面积的任意多边形而言,以正圆形的周界最短。周长只能用于二维图形(平面、曲面)上,三维图形(立体) 如柱体、锥体、球体等都不能以周界表示其边界大小,而是要用总表面面积。

参考资料来源:百度百科-周长

五、直角三角形的周长公式是什么

直角三角形的周长公式:a+b+c(三边的和)。直角三角形是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角三角形两种。其符合勾股定理,具有一些特殊性质和判定方法。

三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。

六、直角三角形的周长公式

直角三角形的周长就是三条边相加,公式为:c=a+b+c,直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外:直角三角形两直角边的平方和等于斜边的平方,这个性质也被称为勾股定理。

勾股定理是一个基本的几何定理,在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。