如何证明收敛数列必定为有界数列?
设数列{a[n]}收敛于a,由定义知存在正整数M,使得当n>M时|a[n]-a|<1,或者说a-1
于是min{a[1],a[2],...,a[M],a-1}<=a[n]<=max{a[1],a[2],...,a[M],a+1},即{a[n]}有界
如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。
数列有界是数列收敛的必要条件,但不是充分条件。
扩展资料:
数列有极限的必要条件:数列单调增且有上界 或 数列单调减且有下界=>数列有极限。
对一切n 有Xn≤M 其中M是与n无关的常数 称数列{Xn}上有界(有上界)并称M是他的一个上界。
对一切n 有Xn≥m 其中m是与n无关的常数 称数列{Xn}下有界(有下界)并称m是他的一个下界。
参考资料来源:百度百科--收敛数列
参考资料来源:百度百科--有界数列
收敛数列必有上界下界吗?
函数收敛不一定有界,因为有界的充要条件是既有上界又有下界。
收敛的数列{xn},在n→∞时,xn→A,这个A是一个固定的极限值,是一个常数,所以必然有界。但这个有界不是说上下界都有,只有上界、或只有下界、或上下界都有均可以叫有界。
定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|
定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。
数列有界是数列收敛的必要条件,但不是充分条件收敛数列与其子数列间的关系,子数列也是收敛数列且极限为a恒有|Xn|
收敛数列是有界的 对还是错的 理由
收敛数列是有界的。这是真命题。
收敛数列就是有极限的数列,每一项都不是无穷大,一定有界。
收敛数列一定是有界吗
如果你取一个数列an = 1/n,它显然收敛,而且最大值在n = 1的地方.
可以补充这么一个看起来很怪异,但是细细一想又很显然的引理:
对于给定的数列,假若任给一个实数p,总存在一个正整数N,使得|aN| > p,那么进一步地,对于任意给定的N0,一定可以找到这样一个N*,使得它既满足|aN| > p,又满足N* > N0.
换句话说,要是数列某个地方趋于无穷大了,这个地方必然在无穷远处.
对于任意数列,任意给一段有限长区间,则这段区间上必有界.
原因很显然.数列不像函数,数列能取到的值是有限的.所以只要给出一个有限长的区间,我总能一个一个顺着找到最大值最小值.因而数列要出现无穷大的趋近,只能在无穷远出,因为此时这段区间上有无穷多个点,从而不能一个一个去找最值了.
函数则不一样.所以收敛函数有界的说明中是说,如果函数在无穷远处收敛,那么必然存在一个足够接近与无穷远的区间,使得该区间上函数有界;如果函数在某点收敛,那么必然存在一个该点的临域,使得函数在该区间上有界.
收敛数列一定有界的问题
对,收敛数列一定有界,但不一定上下界都有。有界是存在极限的必要条件,但有界不一定就有极限。