怎么判断三条边是不是能构成三角形

判断三条边是否能组成三角形的所有理由

一个是:三角形内任意2边之和大于第3边,能满足这个就够了但(三角形内任意2边之差小于第3边)这个也算,与上面理由等同。

其实方法可以是相似的全部方法,但三边相等(SSS)是最直接的,即三边分别是原三角形的一半,

如果想用带角的方法,则可通过三角形腰边中点连线平行于底边来证明出角之间的关系。

扩展资料:

由 [2]  余弦定理延伸而来。

若一个三角形的三边a,b,c

满足:

则这个三角形是锐角三角形;

则这个三角形是直角三角形;

则这个三角形是钝角三角形。

按边分

1、不等边三角形;不等边三角形,数学定义,指的是三条边都不相等的三角形叫不等边三角形。

2、等腰三角形;等腰三角形(isosceles triangle),指两边相等的三角形,相等的两个边称为这个三角形的腰。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形的两个底角度数相等(简写成“等边对等角”)。

等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一性质”)。等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。等腰三角形底边上的垂直平分线到两条腰的距离相等。

等腰三角形的一腰上的高与底边的夹角等于顶角的一半。等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。等腰三角形是轴对称图形,(不是等边三角形的情况下)只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

等腰三角形中腰的平方等于高的平方加底的一半的平方。等腰三角形的腰与它的高的关系,直接的关系是:腰大于高。间接的关系是:腰的平方等于高的平方加底的一半的平方。

3、等边三角形。等边三角形(又称正三角形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。

参考资料:百度百科-三角形(几何图形)

构成三角形的条件构成三角形需要什么条件

三角形的组成条件为:

1、组成三角形的三条边中,任意一边大于其他两边之差,任意一边小于其他两边之和。

2、三角形由同一平面内且不在同一直线上的三条线段,首尾顺次相接所得到的封闭的内角和为180度的几何图形。

构成三角形的条件是什么?

可以根据数学公式进行判断。

一、数学定理。要构成三角形,必须要任意两边和大于第三边。进行判断的时候,其实只需要判断最小的两边和大于最长一边即可。

二、算法设计。根据数学定理,在获取到三个边长后,可以有多种方法进行判断。

判断三条线段能否组成三角形的依据是三角形三边关系的定理:“三角形任何两边的和大于第三边”和它的推论:“三角形任何两边的差小于第三边”。即若三角形的三边是a,b,c,则有:

a

b

c

以及

a>c-b(且a>b-c),④

b>a-c(且b>c-a),⑤

c>a-b(且c>b-a)。⑥

在具体应用时,一般要在给出的三条线段中,找出一条最长的线段与另两条线段的和进行比较,如果适合定理,另外5个不等式就自然成立。

扩展资料:

性质

1 、在平面上三角形的内角和等于180°(内角和定理)。

2 、在平面上三角形的外角和等于360° (外角和定理)。

3、 在平面上三角形的外角等于与其不相邻的两个内角之和。

推论:三角形的一个外角大于任何一个和它不相邻的内角。

4、 一个三角形的三个内角中最少有两个锐角。

5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。

7、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。

8、直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。

能组成三角形的条件

三角形的组成条件为:组成三角形的三条边中,任意一边大于其他两边之差,任意一边小于其他两边之和。三角形由同一平面内且不在同一直线上的三条线段,首尾顺次相接所得到的封闭的内角和为180度的几何图形。

三角形性质:

1、勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。

2、勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。

3、三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。

4、在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。

5、三角形任意两边之和大于第三边,任意两边之差小于第三边。

6、在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

7、一个三角形的三个内角中最少有两个锐角。

8、在平面上三角形的外角等于与其不相邻的两个内角之和。

9、内角和定理:在平面上三角形的内角和等于180°。

10、外角和定理:在平面上三角形的外角和等于360°。