一、实数的概念及分类?

实数,是有理数和无理数的总称数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。

所有实数的集合则可称为实数系(real number system)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。

实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

二、实数的分类

实数分为有理数和无理数。有理数分为整数和分数(分数即是小数),整数分为正整数,负整数,0。

三、实数的具体分类 实数的具体分类是哪些

1. 实数可以分为有理数和无理数。有理数可以分为整数和分数。整数分为正整数、0整数和负整数。分数分为正分数和负分数。

2. 实数可以分为正数、0和负数。正数可以分为正整数和正分数。负数可以分为负整数和负分数。

四、实数的分类是什么?

实数的分类:实数可以分为有理数和无理数两类。

有理数是整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。有理数的小数部分是有限或循环小数。不是有理数的实数遂称为无理数。

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。

实数的性质:

1、封闭性

实数集对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。

2、有序性

实数集是有序的,即任意两个实数a、b必定满足并且只满足下列三个关系之一:a<b,a=b,a>b。

3、传递性

实数大小具有传递性,即若a>b,且b>c,则有a>c。

4、阿基米德性质

实数具有阿基米德性质,即(倒A)a,b∈R,若a>0,则∃正整数n,na>b。

5、稠密性

R实数集具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数。

6、完备性

作为度量空间或一致空间,实数集合是个完备空间,