一、物理学中的“四大力学”分别是哪四项?

如果是物理系学生的角度, 四大力学是:理论力学、热力学和统计物理、电动力学、量子力学,这是他们学习的时候最重要的四门大课

如果是工科学生,那就是理论力学、材料力学、流体力学和..., 对他们而言, 要注重实用……

如果从物理学的发展,说得严密一点,应该是经典力学、统计物理、电动力学、量子力学,毕竟理论力学只是经典力学的一部分而且主要是侧重于数学处理方法,实际上和普通物理的力学部分没有本质差别

二、四大力学都分别是什么主要内容?

帮您转载来的:

理论物理四大力学由传统的《理论力学》、《电动力学》、《量子力学》和《热力学、统计物理》组成编辑本段概论理论物理四大力学由传统的《理论力学》、《电动力学》、《量子力学》和《热力学、统计物理》组成,它是本科生在普通物理的基础上,为了进一步把感性认识提高到理性认识而必须学习的基础理论课程,在物理系本科生的基础课教学中占有核心的地位。理论物理本身具有概念抽象、数学工具覆盖范围广的特点,其中理论力学以分析力学为核心,以完美的理论体系描述了粒子的机械运动,同时也为学习其它理论课程铺路。热力学与统计物理是凝聚态理论的基础理论,热力学总结了物质的宏观热现象(如压力、温度、体积的变化,物体间的能量转换等),而统计物理则从微观的观点(即认为物质由原子分子组成,这些粒子间存在着相互作用)对宏观热现象作出了解释。电动力学以麦克斯韦方程为核心,以简洁的理论形式,高度概括了与电和磁相关的物理现象(包括电磁波的传播)。而量子力学讲述支配微观世界的规律,由于在21世纪人类对自然界的探索(如对生物过程的研究)将更多、更深入地在微观的层次进行,量子力学的重要性是不言而喻的。编辑本段理论力学主要内容讨论经典力学问题。用分析力学(即拉格朗日力学和哈密顿力学)的观点处理牛顿力学问题,并加入混沌等较新的内容。编辑本段电动力学主要内容电动力学是研究电磁现象的经典的动力学理论,它主要研究电磁场的基本属性、运动规律以及电磁场和带电物质的相互作用。同所有的认识过程一样,人类对电磁运动形态的认识,也是由特殊到一般、由现象到本质逐步深入的。人们对电磁现象的认识范围,是从静电、静磁和似稳电流等特殊方面逐步扩大,直到一般的运动变化的过程。(鉴于不同文献作者编写思路不尽相同,以下归纳仅供参考)。第一部分 电动力学的基本理论这部分系统阐述电动力学的基本原理、理论方法及其应用。先从几个守恒定律和电磁波的知识出发,对电磁相互作用的局域场论和电磁波性质形成一个整理的了解。接下来学习势的概念,及规范变换与规范不变性等相关理论,以及相对论电动力学,以便于与近代物理的衔接。第二部分 介质电动力学 这部分是电动力学基本理论在介质中的应用.从物理本质上来说,各类介质显示出来的宏观电磁(光学)效应,尤其是非线性效应,决定于介质内部的微观结构和一定的外部条件(环境温度、作用场强和频率等),其中的动力学机制,只有通过量子理论才能解决. 经典电动力学结合一定的宏观唯象模型,只可以在某种程度上近似描述介质中的电磁现象.这部分主要包括:介质中的场方程和边值问题,有介质存在时电磁波的传播,以及电动力学对超导体、等离子体和晶体的电磁性质的描述.编辑本段量子力学主要内容量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。编辑本段热力学与统计物理主要内容该部分是研究热运动的规律和热运动对物质宏观性质的影响。热力学是热运动的宏观理论,用“唯象”的方法,回避了宏观物体的微观结构,使用有限的宏观量(如温度、能量、体积、熵、比热等)来描述,这种描述的基础是能量守恒等几个来自实践经验的宏观基本规律(热力学第零~~第三定律)。统计物理是热运动的微观理论,它用统计的方法去处理复杂的微观运动,认为物质的宏观性质可看成是大量粒子运动的集体表现,宏观量是微观量的某种统计平均值。热力学和统计物理是针对宏观和微观这两个极端情形发展起来的,是相辅相成的。

三、求问,四大力学是什么东西

物理专业的学生一般有开设所谓的四大力学,它们是指“理论力学”、“热力学与统计力学”、“电动力学”、“量子力学”。

如果你对四大力学感兴趣,可以先自修理论力学(先导性课程是力学、高等数学——微积分和微分方程初步),可以同时自修统计力学(先导性课程是热学)和电动力学(先导性课程是数学物理方程),再自修量子力学(先导性课程是光学、原子物理学)。

四、在土木工程中所说的四大力学是哪四大?

材料力学,理论力学,结构力学,土力学。

一、材料力学

材料力学(mechanics of materials)是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。

一般是机械工程和土木工程以及相关专业的大学生必须修读的课程,学习材料力学一般要求学生先修高等数学和理论力学。材料力学与理论力学、结构力学并称三大力学。

材料力学的研究对象主要是棒状材料,如杆、梁、轴等。对于桁架结构的问题在结构力学中讨论,板壳结构的问题在弹性力学中讨论。

二、理论力学

理论力学(theoretical mechanics)是研究物体机械运动的基本规律的学科。力学的一个分支。它是一般力学各分支学科的基础。

理论力学通常分为三个部分:静力学、运动学与动力学。静力学研究作用于物体上的力系的简化理论及力系平衡条件;运动学只从几何角度研究物体机械运动特性而不涉及物体的受力;动力学则研究物体机械运动与受力的关系。动力学是理论力学的核心内容。

理论力学的研究方法是从一些由经验或实验归纳出的反映客观规律的基本公理或定律出发,经过数学演绎得出物体机械运动在一般情况下的规律及具体问题中的特征。理论力学中的物体主要指质点、刚体及刚体系,当物体的变形不能忽略时,则成为变形体力学的讨论对象。静力学与动力学是工程力学的主要部分。

三、结构力学

结构力学是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科,它是土木工程专业和机械类专业学生必修的学科。

结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。

结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。

四、土力学

土力学(Soil mechanics)是研究土体在力的作用下的应力-应变或应力-应变-时间关系和强度的应用学科,是工程力学的一个分支。为工程地质学研究土体中可能发生的地质作用提供定量研究的理论基础和方法。主要用于土木、交通、水利等工程。

扩展资料

土木工程的重要意义:

土木工程的目的是形成人类生产或生活所需要的、功能良好且舒适美观的空间和通道。它既是物质方面的需要,也有象征精神方面的需求。随着社会的发展,工程结构越来越大型化、复杂化,超高层建筑、特大型桥梁、巨型大坝、复杂的地铁系统不断涌现,满足人们的生活需求,同时也演变为社会实力的象征。

土木工程需要解决的根本问题是工程的安全,使结构能够抵抗各种自然或人为的作用力。任何一个工程结构都要承受自身重量,以及承受使用荷载和风力的作用,湿度变化也会对土木工程结构产生力作用。在地震区,土木工程结构还应考虑抵御地震作用。此外,爆炸、振动等人为作用对土木工程的影响也不能忽略。

参考资料

百度百科-土木工程

百度百科-材料力学

百度百科-理论力学

百度百科-结构力学

百度百科-土力学