一、什么是相似对角化啊
相似对角化是指设M为元素取自交换体K中的n阶方阵,将M对角化,就是确定一个对角矩阵D及一个可逆方阵P,使M=PDP-1设f为典范对应于M的Kn的自同态,将M对角化,就是确定Kn的一个基,使在该基中对应f的矩阵是对角矩阵。
扩展资料:
精确对角化法本身的物理概念极为简单,若是只需要得到极小尺寸的结果,在程式撰写方面也很容易,然而增加系统尺寸时,随着所需的内存暴增,程式设计变得非常困难。
精确对角化法本身的物理概念极为简单,若是只需要得到极小尺寸的结果,在程式撰写方面也很容易,然而增加系统尺寸时,随着所需的内存暴增,程式设计变得非常困难。主要困难之处在于如何有效运用有限的内存,以及提升程式运作的效率。
参考资料来源:百度百科-对角化
参考资料来源:百度百科-精确对角化法
二、正交矩阵相似对角化;可逆矩阵相似对角化;可对角化;这三者有什么区别?
P^-1AP = 对角矩阵。
正交对角化要求 P 是正交矩阵, 即P可逆且 P^-1 = P^T。
即是相似变换又是合同变换, 用于二次型。
可逆矩阵相似对角化。
一般考虑的是方阵, 并不要求方阵可逆, 要求 P 可逆。
可对角化就是A可相似对角化, 即存在可逆矩阵P使得 P^-1AP = 对角矩阵。
扩展资料:
在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵,如果正交矩阵的行列式为+1,则称之为特殊正交矩阵。
1.方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;
2.方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;
3.A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;
4.A的列向量组也是正交单位向量组。
5.正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。
参考资料来源:百度百科-正交矩阵
三、什么叫相似对角化???、
就是把一个矩阵化为与它相似的对角阵
说白了,就是通过初等行、列变换,把方阵整理成形如:
E(m*m) O(m*p)
O(n*m) O(n*p)
的对角阵。假设原矩阵的秩=m,则E(m*m)是秩=m的单位阵。
四、线性代数,请问对角化和相似对角化有什么区别,谢谢
对角化和相似对角化是没有区别的,取对角化矩阵的时候,在满足特征值分别可取与原矩阵阶数相同的特征向量时,该对角矩阵即与原矩阵相似,所以说这两个其实是同一件事的不同说法。
相似是一种等价关系,对角化相当于对一类矩阵在相似意义下给出了一种简单的等价形式,这对理论分析是方便的。相似的矩阵拥有很多相同的性质,比如特征多项式,特征根,行列式……如果只关心这类性质,那么相似的矩阵可以看作没有区别的,
这时研究一个一般的可对角化的矩阵,只要研究它的标准形式,一个对角矩阵就可以了。而对角矩阵是最简单的一类矩阵,研究起来非常方便。这个过程相当于在一个等价类中选取最顺眼的元素研究。
扩展资料:
对角矩阵是指只有主对角线上含有非零元素的矩阵,即,已知一个n×n矩阵 ,
如果对于 ,则该矩阵为对角矩阵。如果存在一个矩阵 ,使 的结果为对角矩阵,则称矩阵 将矩阵 对角化。
对于一个矩阵来说,不一定存在将其对角化的矩阵,但是任意一个n×n矩阵如果存在n个线性不相关的特征向量,则该矩阵可被对角化。
矩阵相似于对角矩阵的条件
充要条件
n阶矩阵A相似于对角矩阵的充要条件是A有n个线性无关的特征向量。
证明过程:
(1)必要性。
设有可逆矩阵P,使得
令矩阵P的n个列向量为 ,则有
因而 ,因为P为可逆矩阵,所以 为线性无关的非零向量,它们分别是矩阵A对应于特征值 的特征向量。
(2)充分性。
由必要性的证明可见,如果矩阵A有n个线性无关的特征向量,设它们为 ,对应的特征值分别为 ,则有 ,
以这些向量为列构造矩阵 ,则P可逆,且 ,其中C如下:
即 。
参考资料:对角化_百度百科
五、正交矩阵相似对角化;可逆矩阵相似对角化;可对角化;这三者有什么区别?
P^-1AP = 对角矩阵
正交对角化要求 P 是正交矩阵,即P可逆且 P^-1 = P^T
即是相似变换又是合同变换,用于二次型
可逆矩阵相似对角化
一般考虑的是方阵,并不要求方阵可逆,要求 P 可逆
可对角化就是A可相似对角化,即存在可逆矩阵P使得 P^-1AP = 对角矩阵